Partially collapsed parallel Gibbs sampler for Dirichlet process mixture models
نویسندگان
چکیده
منابع مشابه
Collapsed Variational Dirichlet Process Mixture Models
Nonparametric Bayesian mixture models, in particular Dirichlet process (DP) mixture models, have shown great promise for density estimation and data clustering. Given the size of today’s datasets, computational efficiency becomes an essential ingredient in the applicability of these techniques to real world data. We study and experimentally compare a number of variational Bayesian (VB) approxim...
متن کاملOnline Sparse Collapsed Hybrid Variational-Gibbs Algorithm for Hierarchical Dirichlet Process Topic Models
Topic models for text analysis are most commonly trained using either Gibbs sampling or variational Bayes. Recently, hybrid variational-Gibbs algorithms have been found to combine the best of both worlds. Variational algorithms are fast to converge and more efficient for inference on new documents. Gibbs sampling enables sparse updates since each token is only associated with one topic instead ...
متن کاملPartially Collapsed Gibbs Samplers: Theory and Methods
Ever increasing computational power along with ever more sophisticated statistical computing techniques is making it possible to fit ever more complex statistical models. Among the popular, computationally intensive methods, the Gibbs sampler (Geman and Geman, 1984) has been spotlighted because of its simplicity and power to effectively generate samples from a high-dimensional probability distr...
متن کاملSequentially-Allocated Merge-Split Sampler for Conjugate and Nonconjugate Dirichlet Process Mixture Models
This paper proposes a new efficient merge-split sampler for both conjugate and nonconjugate Dirichlet process mixture (DPM) models. These Bayesian nonparametric models are usually fit usingMarkov chain Monte Carlo (MCMC) or sequential importance sampling (SIS). The latest generation of Gibbs and Gibbs-like samplers for both conjugate and nonconjugate DPM models effectively update the model para...
متن کاملAn Improved Merge-split Sampler for Conjugate Dirichlet Process Mixture Models
The Gibbs sampler is the standard Markov chain Monte Carlo sampler for drawing samples from the posterior distribution of conjugate Dirichlet process mixture models. Researchers have noticed the Gibbs sampler’s tendency to get stuck in local modes and, thus, poorly explore the posterior distribution. Jain and Neal (2004) proposed a merge-split sampler in which a naive random split is sweetened ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition Letters
سال: 2017
ISSN: 0167-8655
DOI: 10.1016/j.patrec.2017.03.009